
HTTP/3
How did we get here?

GET /

GET / HTTP/1.0
Accept: text/html
Accept-Language: en
Accept-Encoding: x-gzip
User-Agent: libwww/2.5
Referer: http://www.example.com/

GET / HTTP/1.0
Accept: text/html
Accept-Language: en
Accept-Encoding: x-gzip
User-Agent: libwww/2.5
Referer: http://www.example.com/
Host: www.example.net
Connection: keep-alive

✅ Connection reuse ✅ Hosting

GET / HTTP/1.1
Accept: text/html
Accept-Language: en
Accept-Encoding: x-gzip
User-Agent: libwww/2.5
Referer: http://www.example.com/
Host: www.example.net
Transfer-Encoding: chunked

✅ Chunked Transfer Codings

⛔ Compression Transfer Codings

⛔ Pipelining

“The protocol is to deliver multiplexed bidirectional reliable
ordered message streams over a bidirectional reliable ordered
byte stream protocol (such as TCP). Message streams may be
initiated by either side, once the underlying byte stream
connection is established.

The length of a message is unrestricted... and the payload of a
message is also unrestricted; such a message can be used
directly, e.g., as a request or a response in an application-level
request/response protocol.

Within each message stream, the messages are delivered  
reliably and in order (as are bytes in TCP).

Each message may be passed as a series of chunks, so that the
multiplexing does not introduce unnecessary synchronization
between streams.

The protocol will be layered on top of bidirectional reliable
ordered byte stream protocols (such as, but not limited to,
TCP), and multiplex many message streams over a single byte
stream connection.

It should be possible for there to be multiple message chunks in
one IP packet.”

 HTTP-NG⛔

SPDY → HTTP/2

✅ Binary framing

✅ Multiplexing

✅ Header Compression

⚠ Prioritisation

⛔ Server Push

What have we learned?

• Incremental changes that exploit layering tend to work

• Changing the fundamental model of the protocol, or
implementation assumptions, often doesn't work well

• It's very tempting to over-engineer things

• Implementation mindshare is key, but resources are finite

• An active community is invaluable

HTTP/2 built a stream layer because we
needed multiplexing on top of TCP.

HTTP/3 gets multiplexing from QUIC.

HTTP/3

Has One Job

Transport 
Head-of-Line 

Blocking

Inter-stream ordering is
not guaranteed

1. SETTINGS

• Frames arriving after SETTINGS may have been sent before it

• ... so it's hard to reason about them

• SETTINGS sent once; cannot change

• Many settings superseded by QUIC transport parameters

2. Prioritisation

• HTTP/2 prioritisation relies upon changes to the dependency
tree being applied by both peers in the same order

• HTTP/3 addresses this by sending all priority changes on one
control stream

• Exclusive prioritisation is not possible

3. Header Compression

• HPACK is effectively a stream of commands:

• Use this literal value

• Use the value indexed at #5

• Insert this value into index #5 and use it

3. Header Compression

• HPACK is effectively a stream of commands:

• Use this literal value

• Use the value indexed at #5

• Insert this value into index #5 and use it

• Dynamic table is updated with a special, one-way stream

• Encoder keeps state about references until headers are ack'd

• References can block insertion; fall back to literals

• Insert count used to track what state is required to decompress

- Captain Ramius, The Hunt for Red October

“Personally, I give us one chance in three.”

What’s Next 
for HTTP?

• HTTP/1.0: extensibility (headers)

• HTTP/1.1: utilisation of transport (multi-homing, conn reuse)

• HTTP-NG: utilisation of transport (HTTP HOL blocking)

• HTTP/2: utilisation of transport (HTTP HOL blocking)

• HTTP/3: utilisation of transport (TCP HOL blocking)

• Connection Coalescing

• Structured Headers

• Semantic Evolution

• CDN Standardisation

• ...

HTTP/4?

HTTP.

